

Canada

Natural Resources Ressources naturelles Canada

Global Navigation Satellite Systems (GNSS) serving atmospheric monitoring: A review

Reza Ghoddousi-Fard

Canadian Geodetic Survey, Natural Resources Canada, Ottawa, Canada

Reza.Ghoddousi-Fard@NRCan-RNCan.gc.ca

DASP, February 2024

Introduction

- Global Navigation Satellite Systems (GNSS) are affected by the Earth's atmosphere. While atmospheric effects
 on GNSS signals are nuisance parameters for positioning and navigation applications, they can provide valuable
 information on lower and upper parts of the atmosphere.
- Emerging ground and space based GNSS networks have been providing continuous measurements of the Earth atmosphere for few decades; a valuable source of data for atmospheric monitoring.
- Canadian Active Control System operated by NRCan is consist of continuously tracking GNSS stations. In addition to serving positioning, navigation and timing applications, these stations together with other regional networks are used to extract parameters to monitor the atmospheric effects which can serve upper atmosphere, weather and climate studies.

D His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Global Navigation Satellite Systems (GNSS)

Canada

Some of the notable years in GNSS history

1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988
First GPS satellite launch				First GLONASS satellite launch						
1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
				GPS fully operational		GLONASS fully operational				
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
First BeiDou satellite launch										QZSS first satellite launch
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Galileo first "operational" satellite launch		NavIC first satellite launch							Latest operational BeiDou satellite launch	Galileo latest operational satellite launch

Canada

©Н

Natural Resources **Ressources naturelles** Canada

anada

GNSS measurements: a link to monitor climate change and its impact

His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

UNCLASSIFIED - NON CLASSIFIÉ 6

GNSS atmospheric signal delay

His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Natural Resources Ressources naturelles Canada Canada

Lower atmosphere effects on GNSS: a link to weather prediction and climatology

His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 202

Natural Resources Ressources naturelles Canada Canada

D - NON CLASSIFIÉ

Government Gouvernement of Canada du Canada

MENU 🗸

Canada.ca > <u>Natural Resources Canada</u> > <u>Maps, Tools and Publications</u> > <u>Geodetic Reference Systems</u> > <u>Geodetic tools and data</u> > Canadian Active Control System (CACS)

Canadian Active Control System (CACS)

"CACS consists of continuously tracking global navigation satellite system (GNSS) stations, referred to as active control points (ACPs). They're equipped with a high precision, dual frequency GNSS receiver, a geodetic quality antenna, and some also include an atomic frequency standard."

30+ Scintillation receivers are being deployed...

Regional Network (41) subject to Open Government Licence – Canada

Stations

Français

Search Canada.ca

Q

- A Western Canada Deformation Array (31) subject to Open Government Licence Canada
- Nova Scotia Active Control Network (40) subject to Nova Scotia License
- Discontinued Stations (7) subject to <u>Open Government Licence Canada</u>
- Montreal Active Control Network (4) subject to Open Government Licence Canada

GPS vs GPS+GLONASS vs GPS+GLONASS+Galileo sampling of the atmosphere over 1-hour period using a subset of CACS stations tracking at 1Hz

Expansion of [ground and spacebased] networks capable of tracking multi-GNSS provides enhanced sampling of the atmosphere.

Canada

Ressources naturelles Natural Resources Canada

New constellations and new stations: Promising additional data with challenges to consider

1.0

0.5 -

0

Constellation

Instrumentation (Receiver, antenna,...) .

Signal frequency and channel (tracking mode)

.

ight of Canada, as represented by the Minister of Natural Resources. 202

Co-located GNSS stations at Yellowknife. Canada

12

UT hour of DoY 310, 2022

18

Constellation and station (instrumentation and near-field environment) dependent biases.

Ghoddousi-Fard R. (2017). Impact of receiver and constellation on high rate GNSS phase rate measurements to monitor ionospheric irregularities. Advances in Space Research, vol. 60, pp. 1968–1977. doi: 10.1016/j.asr.2017.07.039

Signal tracking mode impact on e.g. proxy scintillation indices varies depending on the instrumentation, constellation and signal.

GNSS atmospheric measurements: A significant source of data for atmospheric monitoring

Canada

Canadian Geodetic Survey' GNSS ionospheric monitoring

Canadian Geodetic Survey (CGS) near-real-time global TEC maps use high rate real-time IGS stations every 15 minutes. Forecast for up to 24 hours ahead...

Contributing to ICAO through ACFJ aviation space weather advisory service. NRT global vTEC [Stn number= 132] 2017, 130, 00-00-00 (UTC)

CGS global daily TEC maps using about 250 stations, represented using Spherical Harmonics with 1-hour intervals, are submitted to <u>International GNSS Service (IGS)</u> data centers. CGS processes GPS and GLONASS data from about 130 globally distributed high-rate (1 Hz) stations to monitor ionospheric irregularities in near-real-time as a proxy <u>phase scintillation</u> index. As usage of additional GNSS constellations should allow improved sampling of the ionosphere, high-rate Galileo observations are also being included.

His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2023

Thank you!

Reza.Ghoddousi-Fard@NRCan-RNCan.gc.ca

Canada

Ressources naturelles Natural Resources Canada

