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» Improving field-of-view sampling with wide-beam
transmission using non-linear antenna array phasing
« Improving spatial coverage and velocity determination with
multistatic reception by radars with overlapping fields of view
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For more exciting examples see Dan Billett's presentation on Thursday!
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Bistatic vs monostatic scatter
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Multistatic operations

* Previous work:

 Shepherd et al, 2020: bistatic, single
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Multistatic operations
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Multistatic test
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Multistatic geolocation: theory
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Multistatic geolocation: implementation
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Multistatic geolocation: implementation

10 January 2023, 18:30 UT (single scan)
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Multistatic geolocation: implementation

10 January 2023, 18:30 UT (single scan) Equal grid coverage
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Multistatic geolocation: implementation

10 January 2023, 18:30 UT (single scan) Equal grid coverage
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Radio Science manuscript came back from the reviewers for minor revision.



