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The RADICALS Mission

* The Canadian RADiation Impacts on Climate from
Atmospheric Loss Satellite (RADICALS) will be a low-
Earth orbiting micro-satellite mission targeting the
transport of space radiation into the atmosphere, and
the subsequent impact on Earth’s climate.

* The RADICALS mission will focus specifically on
determining which processes control the precipitation

of space radiation into the atmosphere, and the related
impacts on climate.

Understanding the coupled geospace

system and linkages to climatic
P | e an

change is a major challenge

Institute for Space Science, Exploration and Technology




The RADICALS MicroSat I\/I|55|o

A radical voyage of discovery in
the coupled space chmate system

- Image courtesyof NASA. -



Climate Impacts

Terrestrial Atmospheric ITM Processes
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Exploring the Space Weather-Climate ..
Link with RADICALS

Institute for Space Science, Exploration and Technology Q(,4
University of Alberta



RADICALS Mission Goal

Mission goal: “Establish the mechanisms responsible for the loss
of space radiation into the atmosphere, characterise the resulting
atmospheric energy input, and determine the impact on climate.”
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Space Weather
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Energetic Particle Precipitation (EPP): A
solar coupling pathway

adapted from Baker et al., 2012

— Solar EUV and X rays
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Improved Fundamental Understanding
=> Better Models and Forecasts
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IPCC, Climate Models and Impacts

“Quantitative measurements of medium energy electron (MEE)
precipitation are a key to understand the total effect of particle
precipitation on the atmosphere.”

Nesse Tyssoy et al. (2019)

* With absence of detailed measurements, heuristic parameterisation
in model estimates of NOx/HOx destruction of ozone.

* Nesse Tyssoy et al. (2019) conclude the CMIP-6 parameterisation for
electron EPP being used by IPCC introduces an “underestimation of
basic flux strength about one order of magnitude” so medium
energy electron effects are “strongly underestimated”.

Understanding coupled climate

@ response gnd climatic change IS one

of the major challenges of our time

InstituteforSpacegci nnnnnnnnnnnnnnnnnnnnnnnnnnnn |mproved Climate models
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RADICALS Payload

ENERGETIC PARTICLE
PRECIPITATION (EPP)




Innovative Mission Design

Heritage Canadian
Micro-Satellite Bus
from U. Toronto
UTIAS/SFL

Institute for Space Science, Exploration and Technology

University of Alberta

Spacecraft Spin

0.1

0

FGM2 FGM1

— ¥

Polar near sun-
synchronous orbit
with drifting MLT.

Thomson spin-

stabilised. Pitch

angle resolved
energetic particles
and X-ray imaging
twice per 30s spin.

L-shell change during different time intervals .

—15s
|-==10s

>100 keV E2
>300 keV E3

> 1 MeV P68

-

uu-,' -"“.“ _ - - -
ﬂtmmﬂl
3 35 4

4.

AL

L

' 10°

Precipitating e- flux, cm2s 1sr



RADICAL Improvement in EPP PA
Measurements and Climate Impacts

Actual Electron Flux Distribution
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Solar Cycle 25

NOAA Space Weather Prediction Centre

Experimental Solar Cycle 25 Prediction
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RADICALS Test: NASA Sounding Rocket

« Payload for Energetic
Particle Precipitation (5[5
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Summary

* The RADiation Impacts on Climate from Atmospheric
Loss Satellite (RADICALS) will be a low-Earth orbiting
satellite mission targeting the transport of space
radiation into the atmosphere, and the subsequent
impact on Earth’s climate.

* The RADICALS mission will focus specifically on
determining which processes control the precipitation

of space radiation into the atmosphere, and the related
impacts on climate.

Understanding the coupled geospace

@ system and linkages to climatic SV Oy

change is a major challenge :,;

Institute for Space Science, Exploration and Technology
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Ground Station Support and New Space
Weather Data Products from NRCan

.r'
/ 3 BT o0 8 ———"
/ ey &7 g\ TN
/’l h :
/ : & R b \ - o B
£ 7 Inuvik 7 A A " b
atelli ST Y g e
/ : ation ; - = } T | J
2 acility 2k ke &Y\ @
/ : : R R I - -
f )
I ( 1
% !

N
£ A |
rrrrr -

A i 4 LTy
4 v ‘- ’ >"
%
S
- : -

 Three ground stations from Natural Resources Canada.

 CFl Team Member from NRCan Space Weather Forecast
Centre (SWFC) focussing on new SW products for users.
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Climate Impacts

Terrestrial Atmospheric ITM Processes
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Space is Vast: NASA Heliophysics

Great Observatory
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MIPAS NOy: a measure of the EPP indirect effect
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Figure 2. 3-D representation of the Arctic polar vortex (colored by
temperature) and stratospheric anticyclones (colored black) on January 21,
2009, at 00 UT based on MERRA-2. An NH polar map of 90 km NO VMR
from WACCMX + DART hovers above the split vortex. White contours in
the NO map indicate where model GPH deviates by more than 1 km below
the zonal mean, indicative of PW troughs. GPH, geopotential height; NH,
Northern Hemisphere; PW, planetary wave; VMR, volume mixing ratio.

Effect of Atmospheric Dynamics on downward
transport of Nitric Oxide.
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Figure 3. NH polar maps at 0.001 hPa (~90 km) on January 26, 2009 at 12 UT of (a) WACCMX + DART GPH (in color) and MERRA-2 polar vortex edges at
30 km (light gray), 50 km (dark gray), and 70 km (black), (b) simulated FTLE (light and dark gray shading) and 24-h forward trajectory paths (colored lines)
for air that originated at the locations given by the open colored circles at 65°N, spaced every 10° in longitude; the pink dotted lines highlight FTLE ridges of
interest and these are repeated in panels (c) and (d), (c) NO VMR in WACCMX + DART (color contoured), and NO VMR observed by SOFIE (diamonds) and
ACE-FTS (octagons) (note, the ACE-FTS measurement north of Hudson Bay corresponds to a NO VMR of 4.6 ppmv which is outside the color bar range), and
(d) WACCMX + DART temperature (in color) with black stippling and boundary lines indicating where the deviation of WACCMX + DART atomic oxygen is
at least 25% larger than the zonal mean at each latitude. Both warm temperatures and high atomic oxygen are proxies for descent. FTLE, finite-time Lyapunov
exponent; NH, Northern Hemisphere; PW, planetary wave; VMR, volume mixing ratio.

Harvey et al., 2021



Mission Instrument Payload

* Flies CSA-supported high heritage payload:

— High Energy Particle Telescope (HEPT — U. Alberta ECE,
Fedosejevs et al.)

— Fluxgate and Search Coil Magnetometers (FGM and
SCM — U. Alberta Physics, Milling et al)

— X-Ray Instrument (XRI — U. Calgary, Cully et al.)

TRAPPED ELECTRON RADIATION - | SOLARWIND &
THREAT TO SATELLITES LOSS

COMPRESSED

MAGNETOPAUSE fef %R,
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Objectives: Science Traceability Matrix

Instit

Science Goals

Objectives

Characterization and Prediction

What is the energetic particle (electron, proton)

input to the atmosphere at seed energies (~100 keV)

and radiation belt energies (~1 MeV)?

Quantify the flux, energy spectrum and spatial
extent of strong (bounce loss cone-filling) and weak
(drift loss cone-filling) EPP.

Quantify the contribution of microburst precipitation
at seed and radiation belt energies to the overall
precipitation budget.

Quantify the contribution of EMIC wave precipitation
at seed and radiation belt energies to the overall
precipitation budget.

Quantify the rate of backscatter of energetic
particles from the atmosphere at seed and radiation
belt energies.

How effectively can EPP be predicted?

Evaluate models for predicting EPP flux, spectrum
and spatial extent based on ground-based, GEO, and
solar wind data.

Causes

What are the dominant direct causes of EPP at seed
energies (~100 keV) and radiation belt energies (~1
MeV)?

Determine the prevalence of energy-dependent
precipitation corresponding to EMIC and whistler-
mode scattering bands.

Characterize the electromagnetic waves (ULF to VLF)
present at LEO during these EPP events, and in non-
events.

Assess the connection between the magnitude of
the trapped flux and the rates of strong and weak
EPP (cf. Kennel-Petschek)

Atmosph

ri
Effects

What are the atmospheric effects resulting from
EPP?

Assess the relative importance of electron and
proton precipitation to NOx and HOx production in
the thermosphere (indirect effect) and stratosphere
(direct effect).

Societal

Effects

What are the societal effects resulting from EPP?

Determine the characteristics of the precipitating
solar protons that disturb radio frequency
transmissions during polar-cap absorption (PCA)
events.

4(&

yisd

Characterise the rates of radiation belt electron and
proton loss as a result of EPP during different

geomagnetic conditions.




RADICALS: A Canadian Mission

* Project initiated in 2016, and selected for funding by Canada
Foundation for Innovation (CFl) in 2020 Innovation Fund
competition.

* Partner funding from the Government of Alberta secured in 2020.
* Canadian Space Agency matching funding secured in 2022.

* Project initiation in April 2022. Launch target in Q4 2026 or Q1
2027.

* Exploits prior Canadian Space Agency investment in ALL proposed
RADICALS payload instruments, and U. Toronto bus heritage.

e Targets priority international science target with “made in Canada”
solution. cf. updated to NASA Heliophysics Roadmap (to 2033)
target:

“To understand and predict how solar activity, both

ﬂ. electromagnetic and particulate, impacts the climate of a SO,
:@ planet with an established atmosphere;” with focus on ' &
e | “Energetic particle precipitation impacts on the ozone | -, Baae

= . _ . Y g,
o o R layer through the formation of nitric oxides” '*EEEEE
T e e leyiot At y 9 \%/
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"Made-in-Canada” Mission

Mission proposal brings together leading space science and technology experts
in Canada:

Mission Leadership (U. Alberta& U. Calgary): Mann, Lipsett, Cully, Zee, Barona
et al.

Spacecraft Bus (U. Toronto): Zee

Payloads: Fluxgate and Search Coil Mag. (U. Alberta): Milling, Kale; Energetic
Particle Telescope (U. Alberta): Fedosejevs, Tiedje; X-ray Imager (U. Calgary):
Cully.

Ground-based Data Support: McWilliams (U. Saskatchewan), Connors
(Athabasca U.), Cully (U. Calgary), et al.

Space Weather Science and Data Products (NRCan): Fiori et al.
Ground-stations (NRCan): CCMEO and Hazards Divisions

Mission MOC and SOC and Operations (U. Calgary): Yau, Howarth.
Modelling: Rankin (U. Alberta), Ward (UNB)

Industry Partners: Honeywell, Magellan.

Canadian Space Agency

. . - . : YO
ﬁ : Extensive Canadian and international data f’“%:;,
= D users identified. -

Institute for Space Science, Exploration and Technology
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DEFIANT-XL Bus Layout

*  Two primary volumes:
— Top: Payload Bay
— Bottom: Spacecraft/Bus Bay O W
* Dimensions: b‘/*'ﬁ',ﬁ;
— Total Exterior: 400 mm x 400 mm x 580 mm e

— Payload Interior: 375 mm x 375 mm x 265
mm

* Load paths:
— Spacecraft bay constitutes primary structure

— Payload bay secures to spacecraft bay via a
structural divider tray

— Spacecraft secured to LV via launch adaptor,
mounted to spacecraft bay structure

SR |
) )
Payload Bay | : i

i

Spacecraft Bay -

Institute for Space Science, Exploration and Technology

University of Alberta



Solar Panel Layout for RADICALS

« Main feature of the DEFIANT-XL bus is its two large deployable solar panels.
» Solar cells installed on both sides of the deployable panel.
» Panels deployed at 70° pictured, but the angle will be optimised to the orbit we receive

from the Launch Provider.
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Instrument fields of view
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