

Swarm-E Radio Receiver Instrument Observations of High Power VLF Waves in the Ionosphere for Rapid Radiation Belt Remediation

Paul A. Bernhardt¹, Donald Hampton, Joe D. Huba², Carl L. Siefring³ Man Hua⁴, Jacob Bortnik⁴, Qianli Ma⁴, Pekka T. Verronen⁵, Andrew Howarth⁶ Robert Moore⁷, Mark Golkowski⁸

¹Geophysical Institute, University of Alaska, Fairbanks, AK, ²Syntek Technologies, Fairfax, VA
 ³Plasma Physics Division, Naval Research Laboratory, Washington, DC USA
 ⁴Dep. Atmospheric and Ocean. Science., UCLA, Los Angeles, CA
 ⁵Sodankylä Geophysical Observatory, Univ. Oulu, Sodankylä, Finland
 ⁶University of Calgary, Calgary, AB, Canada T2N 1N4
 ⁷Electrical and Computer Engineering, University of Florida, Gainesville, FL
 ⁸Mark Golkowski, Engineering, Design and Computing, University of Colorado, Denver, CO

Swarm-E e-POP Electric Field Sensor

Amplification of VLF Waves in Space

Presentation Outline

Problem: Energetic Electrons in the Radiation Belts

- Bad for Satellites Destroys Spacecraft Electrons
- Good Source of Energy for Ionospheric Modification Experiments
 - Artificial Energetic Electron Precipitation with VLF Whistler-Mode Waves
 - Localized Production of Optical Emissions, Enhanced D-Region Densities and X-Rays
- Generation of Intense Whistler Mode Waves in Space
 - VLF Signal Exciters on the Ground or on Satellites
 - New Concept: Directional Amplification of Whistler Waves in Space
- F-Region Directional Amplification Experiments in Space
 - Rocket Motor Burns Generate Lower Hybrid Waves over Ground VLF Transmitters
 - Simultaneous VLF and Lower-Hybrid Wave Excitation with HAARP High Power HF
- F-Region Lower Hybrid Waves Leading to Large VLF Amplification
 - Broadband 30 dB Amplification of Low Frequency EM Waves from Earth Sources
 - Transmitted VLF Signals Also Amplified by Strong Radiation Belt Interactions
- Electrical Engineering Tools for Solving the Radiation Belt Problem
 - System Design Engineering (Building a VLF Transmitter Out of the Ionosphere)
 - Signal Processing (Detecting the Source and Received VLF Waves)
 - Electromagnetic Theory (Radiation and Propagation of the HF and VLF Waves)

Gombosi et al., Anthropogenic Space Weather, Space Sci. Rev. 212, 985–1039 (2017).

Satellite	Launch	End	Damage history	Comments
Injun I	Jun 1961	Mar 1963	Solar cell and transmitters	Solar cell reduced power
TRAAC	Nov 1961	Aug 1962	Solar cell Radiation Damage	Failure of the power system
Transit-4B	Nov 1961	Aug 1962	Solar cell Radiation Damage	Test circuits diagnose failure
OSO-1	Mar 1962	May 1964	Solar cell damage	Recorder failure in May 1962
Ariel-1	Apr 1962	Aug 1962	Solar cell Radiation Damage	
Kosmos-5	May 1962	May 1963	Reported damage by Starfish.	
Telstar-1	Jul 1962	Feb 1963	Transistor radiation damage	Instrumented to measure
Alouette-1	Sep 1962	Jan 1968	No adverse effects by Starfish	Conservative power design
Explorer XIV	Oct 1962	Aug 1963	Encoder Intermittent failures	
Explorer XV	Oct 1962	Jan 1963	Under-voltage Failure	
ANNA-1B	Oct 1962	?	Solar cell Deterioration	Flew the first GaAs solar cells

Solution: Whistler Resonance Scattering of Energetic Electrons Lauben et al., Precipitation of Electrons by Oblique Whistlers, 2001

REDA

of Alask

Rocket Exhaust Driven Amplification of VLF Waves in Space Comparison of Amplification With ELF/VLF Wave Excitation

Whistler Wave ELF/VLF-Signal Exciters

8 pT

- 1. Ground Sources
 - a) Lightning
 - b) Global VLF Transmitters
- 2. High Power HF Ionospheric Modification
 - a) EISCAT, HAARP, Arecibo Modulated Electro Jets
 - b) Nonlinear Interactions
- 3. Satellite Sources Briefed to Flight
 - a) Large Antenna/Powerful VLF transmitter on **AFRL DSX**
 - b) Ferrite Antennae for Shear Alfven (EMIC) Waves
 - c) Modulated Electron Beams of LANL Beam-PIE
 - d) High Speed Ion Injections with **NRL SMART**

Whistler Wave Signal Detectors

- VLF Receivers in Space and on Ground (Arase, DSX, SWARM-E)
- 2. Electron Precipitation into the Lower Atmosphere (cep)
- 3. Earth-Ionosphere Waveguide Modification for EM Wave Propagation
- 4. Enhanced D-Region for HF Absorption Indication of Electron Precipitation

with **NRL SMART**

Interactions

(WTWPA)

- of LANL Beam-PIE
- d) High Speed Ion Injections with **NRL SMART**

Whistler Traveling Wave Parametric Amplifier (WTWPA)

LH Pump Wave Potential A_{0M} Determines Amplifier Gain

25.2 kHz Whistler Traveling Wave Parametric Amplifier

Bernhardt, Whistler Traveling Wave Parametric Amplifier, IEEE Trans. on Plasma Sci., 49, 2021

Rocket Exhaust Driven Amplification (REDA) of VLF Waves in Space

Measurements of REDA During the NG-18 Cygnus Mission

Intersection of Whistler Signal with Rocket Exhaust Plume

The **Rocket Exhaust Driven Amplification (REDA)** technique **AMPLIFIES** whistler waves from existing ground transmitters rather than trying to **GENERATE** large amplitude whistler waves from ground- or space-based systems.

This technique was demonstrated in May 2020 but further tests of REDA are needed to understand and predict the amplification process.

In conjunction with the DOD Space Test Program, ISS reboost burns monitored for REDA application

Time After Start of Precipitation Event (s)

Radio/Radar Based Diagnostics Facilities for HAARP HF Ionospheric Modification

HAARP HF Transmitter, AK

Kodiak SuperDARN Radar

HF Transmissions of 3.25 MHz X-Mode with VLF Chirps 8.1/9.6 MHz O-Mode with Lower Hybrid Wave Stimulations

Time after 01:20:00 (Seconds)

High Power HF VLF Generation and Amplification Scheme

High Power HF VLF Generation and Amplification Scheme

High Power HF VLF Generation and Amplification Scheme

Relative Time (Seconds)

- Radiation Belt Electrons are a Hazard to Satellite Electronics
- The Fluxes of Satellite-Killing Electrons Can be Reduced by
 Airglow
 Amplification of Very Low-Frequency (VLF) Whistler Waves in the F Region Ionosphere Before They Propagate to the Magnetosphere

Enhanced

- The Rocket Exhaust Driven Amplification (REDA) and High Frequency Stimulated Amplification (HFSA) technique **AMPLIFY** whistler waves from existing ground transmitters rather than trying to **GENERATE** large amplitude whistler waves from ground- or space-based systems
- Both Methods have Been Demonstrated in the Geospace Environment