
Auroral Beads Associated with a Field Line Resonance

Frances Fenrich, Robert Rankin
Department of Physics, University of Alberta

2024 DASP Workshop
Thursday, February 22



Some Background on Auroral Beads

• Auroral Beads are azimuthally periodic enhancements in auroral emissions 
along a pre-existing arc that develop into periodic spirals/vortices followed by 
auroral breakup. 

• They are observed prior to >90% of substorm onsets (Nishimura et al., 2016). 
and are therefore a key mechanism in substorm triggering. Both eastward 
and westward propagation beads are observed with eastward propagation 
more common.

• Many studies have shown an association between Pi1-2 (10-100 mHz) ULF 
waves and auroral beads/substorm onset (Elphinestone et al., 1995; Smith et 
al.,2020; Lessard et al., 2011; Rae et al., 2010, 2014)

• Tian et al. (2022) presented Van Allen Probe (RBSP) observations showing 
auroral bead emissions are due to electron acceleration via Kinetic Alfven 
Waves (KAW) in the equatorial inner magnetosphere.  These KAW were 
accompanied by a 15 mHz Alfven wave. 
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Athabasca, AB, Canada

https://data-portal.phys.ucalgary.ca/archive/trex_rgb/

Oct. 21,2023



Auroral Beading and Intensification Event
Observed by the THEMIS TPAS ASI on July 25, 2016 at ~ 05:10 UT
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Auroral Intensification
Observed by the THEMIS TPAS ASI on July 25, 2016 at 05:10 UT

THEMIS TPAS



Auroral Intensification
Observed by the THEMIS TPAS ASI on July 25, 2016 at 05:10 UT

Brightening Propagates 
Westward at ~6 km/s

THEMIS TPAS



Auroral Intensification
Observed by the THEMIS TPAS ASI on July 25, 2016 at 05:10 UT

Wave Phase Propagates 
Easward at ~1 km/s

m ~ 180

Brightening Propagates 
Westward at ~6 km/s

THEMIS TPAS



Auroral Intensification
Observed by the THEMIS TPAS ASI on July 25, 2016 at 05:10 UT

Wave Phase Propagates 
Easward at ~1 km/s

m ~ 180

Brightening Propagates 
Westward at ~6 km/s

THEMIS TPAS

SAS B6



Auroral Intensification
Observed by the THEMIS TPAS ASI on July 25, 2016 at 05:10 UT

Wave Phase Propagates 
Easward at ~1 km/s

m ~ 180

Brightening Propagates 
Westward at ~6 km/s

THEMIS TPAS

SAS B6

CVE B10



Auroral Intensification
Observed by the THEMIS TPAS ASI on July 25, 2016 at 05:10 UT

Wave Phase Propagates 
Easward at ~1 km/s

m ~ 180

Brightening Propagates 
Westward at ~6 km/s

THEMIS TPAS

SAS B6

CVE B10



FFT SpectraTime Series 05:06 – 05:24 UT

TPAS Intensity
-35o mlon, 62.5o mlat

SAS LOS Velocity
Beam 6, Gate 4

-39.8o mlon, 63.5o mlat

CVE LOS Velocity
Beam 10, Gate 27

-39.5o mlon, 59.4o mlat



FFT SpectraTime Series 05:06 – 05:24 UT

TPAS Intensity
-35o mlon, 62.5o mlat

SAS LOS Velocity
Beam 6, Gate 4

-39.8o mlon, 63.5o mlat

CVE LOS Velocity
Beam 10, Gate 27

-39.5o mlon, 59.4o mlat

10 mHz



FFT SpectraTime Series 05:06 – 05:24 UT

TPAS Intensity
-35o mlon, 62.5o mlat

SAS LOS Velocity
Beam 6, Gate 4

-39.8o mlon, 63.5o mlat

CVE LOS Velocity
Beam 10, Gate 27

-39.5o mlon, 59.4o mlat

10 mHz

20-23 mHz



FFT SpectraTime Series 05:06 – 05:24 UT

TPAS Intensity
-35o mlon, 62.5o mlat

SAS LOS Velocity
Beam 6, Gate 4

-39.8o mlon, 63.5o mlat

CVE LOS Velocity
Beam 10, Gate 27

-39.5o mlon, 59.4o mlat

10 mHz

20-23 mHz

Initial wave 5:09 



FFT SpectraTime Series 05:06 – 05:24 UT

TPAS Intensity
-35o mlon, 62.5o mlat

SAS LOS Velocity
Beam 6, Gate 4

-39.8o mlon, 63.5o mlat

CVE LOS Velocity
Beam 10, Gate 27

-39.5o mlon, 59.4o mlat

10 mHz

20-23 mHz

Initial wave 5:09 

Vortices appear 05:10



FFT SpectraTime Series 05:06 – 05:24 UT

TPAS Intensity
-35o mlon, 62.5o mlat

SAS LOS Velocity
Beam 6, Gate 4

-39.8o mlon, 63.5o mlat

CVE LOS Velocity
Beam 10, Gate 27

-39.5o mlon, 59.4o mlat

10 mHz

20-23 mHz

Initial wave 5:09 

Vortices appear 05:10

Auroral breakup 05:13:15



FLR Analysis
Spectral Power and Phase Profiles vs Latitude at 10 mHz and 20 mHz

Localized Power and ~180 Phase Variation Versus Latitude          FLR



FLR Analysis
Spectral Power and Phase Profiles vs Latitude at 10 mHz and 20 mHz

Localized Power and ~180 Phase Variation Versus Latitude          FLR

P
h

ase (D
eg)

-180

-90

0

90

180

Power 
Phase

TPAS at 6-12 mHz
-31o mlon



FLR Analysis
Spectral Power and Phase Profiles vs Latitude at 10 mHz and 20 mHz

Localized Power and ~180 Phase Variation Versus Latitude          FLR

P
h

ase (D
eg)

SAS Beam 6  at 10 mHz

P
h

ase (D
eg)

-180

-90

0

90

180

Power 
Phase

TPAS at 6-12 mHz
-31o mlon



FLR Analysis
Spectral Power and Phase Profiles vs Latitude at 10 mHz and 20 mHz

CVE Beam 10  at 20 mHz

P
h

ase (D
eg)

Localized Power and ~180 Phase Variation Versus Latitude          FLR

P
h

ase (D
eg)

SAS Beam 6  at 10 mHz

P
h

ase (D
eg)

-180

-90

0

90

180

Power 
Phase

TPAS at 6-12 mHz
-31o mlon



FLR Analysis
Spectral Power and Phase Profiles vs Latitude at 10 mHz and 20 mHz

CVE Beam 10  at 20 mHz

P
h

ase (D
eg)

Localized Power and ~180 Phase Variation Versus Latitude          FLR

P
h

ase (D
eg)

SAS Beam 6  at 10 mHz

P
h

ase (D
eg)

-180

-90

0

90

180

Power 
Phase

TPAS at 6-12 mHz
-31o mlon

?



FLR Analysis
Spectral Power and Phase Profiles vs Latitude at 10 mHz and 20 mHz

CVE Beam 10  at 20 mHz

P
h

ase (D
eg)

Localized Power and ~180 Phase Variation Versus Latitude          FLR

P
h

ase (D
eg)

SAS Beam 6  at 10 mHz

P
h

ase (D
eg)

-180

-90

0

90

180

Power 
Phase

TPAS at 6-12 mHz
-31o mlon

?

High-m Poloidal FLRs                    Wave-Particle Coupling 



RBSPA Observations



RBSPA Observations

~150-200 keV protons correspond to ~6 km/s drift speed in ionosphere at TPAS



RBSPA Observations

~150-200 keV protons correspond to ~6 km/s drift speed in ionosphere at TPAS

This supports a wave-particle drift resonance 
driving initial bead growth at ~10 mHz.



RBSPA Observations

~150-200 keV protons correspond to ~6 km/s drift speed in ionosphere at TPAS

This supports a wave-particle drift resonance 
driving initial bead growth at ~10 mHz.



Drift Resonance Drift-Bounce Resonance

Ion Drift

Q. Zong, Ann. Geophys., 2022

dE and dJ will be in phase dE and dJ will have a 90o phase difference
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RBSPA Observations of a mixed polarization 22 mHz wave 
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Pitch Angle Distributions
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Energy Distributions Before (solid) and After (dashed) the 22 mHz Wave 
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Summary

 Auroral Beads are high-m FLRs at frequencies ranging from 7-25 mHz driven by wave-particle drift 
and drift-bounce mode instabilities. 

 Associated with the standing Alfven FLRs are kinetic Alfven waves that accelerate the auroral
electrons producing the auroral bead emissions. ( Tian et al., GRL 2022)

 The high-m FLRs have strong shear flow which results in the spiral bead formations and possibly a 
shear flow instability which may be the trigger for auroral breakup and substorm onset.
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