Climatology of ionospheric HF propagation at high latitudes from SuperDARN Canada observations

Pasha Ponomarenko and Kathryn McWilliams University of Saskatchewan, Saskatoon, Canada

• Issues with conventional forecasting of HF propagation at high latitudes

- Issues with conventional forecasting of HF propagation at high latitudes
- Alternative approach: building empirical propagation model

- Issues with conventional forecasting of HF propagation at high latitudes
- Alternative approach: building empirical propagation model

– Generating a core dataset

- Issues with conventional forecasting of HF propagation at high latitudes
- Alternative approach: building empirical propagation model
 - Generating a core dataset
 - Identifying propagation modes

- Issues with conventional forecasting of HF propagation at high latitudes
- Alternative approach: building empirical propagation model
 - Generating a core dataset
 - Identifying propagation modes
 - Extracting ionospheric information

- Issues with conventional forecasting of HF propagation at high latitudes
- Alternative approach: building empirical propagation model
 - Generating a core dataset
 - Identifying propagation modes
 - Extracting ionospheric information
- Summary and future work

Model ionosphere (e.g. IRI)

DASP 2024 Workshop, 19-23 2024, Edmonton

Ionospheric models and alternative approach • International Reference Ionosphere (IRI)

- International Reference Ionosphere (IRI)
 - it is reliable at mid and low latitudes but <u>does not work</u> well at high latitudes

- International Reference Ionosphere (IRI)
 - it is reliable at mid and low latitudes but <u>does not work</u> well at high latitudes
- Empirical-Canadian High Arctic Ionospheric Model (E-CHAIM)

- International Reference Ionosphere (IRI)
 - it is reliable at mid and low latitudes but <u>does not work</u> well at high latitudes
- Empirical-Canadian High Arctic Ionospheric Model (E-CHAIM)
 - Based on ionosonde and GPS data from >50 deg latitude and performs better at auroral/polar regions

- International Reference Ionosphere (IRI)
 - it is reliable at mid and low latitudes but <u>does not work</u> well at high latitudes
- Empirical-Canadian High Arctic Ionospheric Model (E-CHAIM)
 - Based on ionosonde and GPS data from >50 deg latitude and performs better at auroral/polar regions
- We suggested an **alternative approach** based on <u>direct</u> <u>observations</u> of HF propagation characteristics by SuperDARN radars which would allow to <u>bypass the</u> <u>ionospheric and propagation models</u>.

DASP 2024 Workshop, 19-23 2024, Edmonton

SuperDARN uses <u>HF backscatter</u>
from ionospheric irregularities to
measure plasma drifts and provides
an <u>extensive coverage</u> of the auroral
and polar cap regions

SuperDARN uses <u>HF backscatter</u>
from ionospheric irregularities to
measure plasma drifts and provides
an <u>extensive coverage</u> of the auroral
and polar cap regions

- SuperDARN uses <u>HF backscatter</u>
 from ionospheric irregularities to
 measure plasma drifts and provides
 an <u>extensive coverage</u> of the auroral
 and polar cap regions
- We utilise <u>elevation angle</u> (vertical angle of arrival) for <u>direct</u> <u>characterisation</u> of HF propagation.
 - This approach was enabled by a <u>recent</u> progress in SuperDARN elevation angle <u>calibration</u>

https://doi.org/10.1016/j.polar.2021.100638

• Propagation mode (elevation vs range)

• Plasma frequency (Snell's Law)

• Propagation mode (elevation vs range)

• Propagation mode (elevation vs range)

DASP 2024 Workshop, 19-23 2024, Edmonton

• Propagation mode (elevation vs range)

• Good coverage of highlatitude regions:

- Good coverage of highlatitude regions:
 - Rankin Inlet (RKN), Inuvik (INV), Clyde River (CLY) – polar cap

- Good coverage of highlatitude regions:
 - Rankin Inlet (RKN), Inuvik (INV), Clyde River (CLY) – polar cap
 - Saskatoon (SAS), Prince
 George (PGR) auroral oval

- Good coverage of highlatitude regions:
 - Rankin Inlet (RKN), Inuvik (INV), Clyde River (CLY) – polar cap
 - Saskatoon (SAS), Prince
 George (PGR) auroral oval
- Full solar cycle 24 (2008-2019, CLY from 2013)

- Good coverage of highlatitude regions:
 - Rankin Inlet (RKN), Inuvik (INV), Clyde River (CLY) – polar cap
 - Saskatoon (SAS), Prince
 George (PGR) auroral oval
- Full solar cycle 24 (2008-2019, CLY – from 2013)
- Operation at two frequency bands (2011-2019) :
 - 10-11 MHz
 - 12-13.5 MHz

Monthly <u>elevation *vs* group range</u> histograms have been built for each UT hour, beam direction, scatter type, and frequency band over the entire dataset.

Monthly <u>elevation vs group range</u> histograms have been built for each UT hour, beam direction, scatter type, and frequency band over the entire dataset.

<u>Ground scatter</u> echoes were separated from <u>ionospheric scatter</u> echoes based on low velocity and spectral width values.

Monthly <u>elevation *vs* group range</u> histograms have been built for each UT hour, beam direction, scatter type, and frequency band over the entire dataset.

<u>Ground scatter</u> echoes were separated from <u>ionospheric scatter</u> echoes based on low velocity and spectral width values.

Rankin Inlet (summer, local noon)

Monthly <u>elevation vs group range</u> histograms have been built for each UT hour, beam direction, scatter type, and frequency band over the entire dataset.

<u>Ground scatter</u> echoes were separated from <u>ionospheric scatter</u> echoes based on low velocity and spectral width values.

Clyde River (equinox, local midnight)

Rankin Inlet (summer, local noon)

Monthly <u>elevation *vs* group range</u> histograms have been built for each UT hour, beam direction, scatter type, and frequency band over the entire dataset.

<u>Ground scatter</u> echoes were separated from <u>ionospheric scatter</u> echoes based on low velocity and spectral width values.

Clyde River (equinox, local midnight)

Rankin Inlet (summer, local noon)

Each echo population corresponds to a specific propagation mode.

Propagation mode identification

Summer noon

Summer noon

201306, 18UT, ID 65 beams 06-09 10 MHz Ionopshere

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Summer noon

Winter noon

Ionospheric scatter

Ionospheric scatter

Ground scatter

Ground scatter

Ionospheric scatter

22 February 2024

DASP 2024 Workshop, 19-23 2024,

Edmonton

Deriving propagation parameters

12 MHz

Estimated F2 layer parameters:

Estimated F2 layer parameters:

• Skip zone distance

12 MHz

Estimated F2 layer parameters:

- Skip zone distance
- Plasma frequency *

DASP 2024 Workshop, 19-23 2024,

DASP 2024 Workshop, 19-23 2024,

There is a one-to-one relationship between elevation angle and plasma frequency at the scatter/reflection location:

There is a one-to-one relationship between elevation angle and plasma frequency at the scatter/reflection location:

 $n_0 \cos \varphi_0 = n \cos \varphi_s$

 $n_0 = 1, \varphi_s \approx 0^\circ \rightarrow \cos \varphi_0 \approx n$

 $n^2 = 1 - f_p^2 / f_0^2$

 $f_p \approx f_0 \sin \varphi_0$

There is a one-to-one relationship between elevation angle and plasma frequency at the scatter/reflection location:

 $n_0 \cos \varphi_0 = n \cos \varphi_s$

$$n_0 = 1, \varphi_s \approx 0^\circ \rightarrow \cos \varphi_0 \approx n$$

$$n^2 = 1 - f_p^2 / f_0^2$$

 $f_p pprox f_0 \sin \varphi_0$

There is a one-to-one relationship between elevation angle and plasma frequency at the scatter/reflection location:

 $n_0 \cos \varphi_0 = n \cos \varphi_s$

$$n_0 = 1, \varphi_s \approx 0^\circ \rightarrow \cos \varphi_0 \approx n$$

$$n^2 = 1 - f_p^2 / f_0^2$$

 $f_p pprox f_0 \sin \varphi_0$

This means that we can replicate frequency ionogram with elevation sweep.

There is a one-to-one relationship between elevation angle and plasma frequency at the scatter/reflection location: $n_0 \cos \varphi_0 = n \cos \varphi_s$

$$n_0 = 1, \varphi_s \approx 0^\circ \to \cos \varphi_0 \approx n$$
$$n^2 = 1 - f_p^2 / f_0^2$$
$$f_p \approx f_0 \sin \varphi_0$$

This means that we can replicate frequency ionogram with elevation sweep.

There is a one-to-one relationship between elevation angle and plasma frequency at the scatter/reflection location:

$$n_0 \cos \varphi_0 - n \cos \varphi_s$$

$$n_0 = 1, \varphi_s \approx 0^\circ \to \cos \varphi_0 \approx n$$

$$n^2 = 1 - \frac{f_p^2}{f_0^2}$$

$$f_p \approx f_0 \sin \varphi_0$$

This means that we can replicate frequency ionogram with elevation sweep.

12

There is a one-to-one relationship between elevation angle and plasma frequency at the scatter/reflection location:

 $n_{\rm cos}$ ($n_{\rm cos}$ – $n_{\rm cos}$ ($n_{\rm cos}$

$$n_0 \cos \varphi_0 = n \cos \varphi_s$$

$$n_0 = 1, \varphi_s \approx 0^\circ \to \cos \varphi_0 \approx n$$

$$n^2 = 1 - f_p^2 / f_0^2$$

$$f_p \approx f_0 \sin \varphi_0$$

This means that we can replicate frequency ionogram with elevation sweep.

https://doi.org/10.1029/2023RS007657

• An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A solar-cycle-long dataset from very high latitudes has been selected.

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A <u>solar-cycle-long dataset</u> from very high latitudes has been selected.
 - An **accurate calibration of elevation angle** measurements has been performed.

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A <u>solar-cycle-long dataset</u> from very high latitudes has been selected.
 - An **accurate calibration of elevation angle** measurements has been performed.
 - <u>Elevation angle *vs* group range</u> dependences for each radar have been binned by UT hour, month, beam direction, and frequency band

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A solar-cycle-long dataset from very high latitudes has been selected.
 - An **accurate calibration of elevation angle** measurements has been performed.
 - <u>Elevation angle *vs* group range</u> dependences for each radar have been binned by UT hour, month, beam direction, and frequency band
 - These dependences were visually inspected to <u>identify the HF propagation modes</u> for Rankin Inlet dataset

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A solar-cycle-long dataset from very high latitudes has been selected.
 - An **accurate calibration of elevation angle** measurements has been performed.
 - <u>Elevation angle *vs* group range</u> dependences for each radar have been binned by UT hour, month, beam direction, and frequency band
 - These dependences were visually inspected to <u>identify the HF propagation modes</u> for Rankin Inlet dataset
 - <u>Skip zone distance, virtual height and plasma frequency</u> for F2 layer maximum were estimated. They show physically meaningful diurnal, seasonal and solar cycle variations.

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A solar-cycle-long dataset from very high latitudes has been selected.
 - An accurate calibration of elevation angle measurements has been performed.
 - <u>Elevation angle *vs* group range</u> dependences for each radar have been binned by UT hour, month, beam direction, and frequency band
 - These dependences were visually inspected to <u>identify the HF propagation modes</u> for Rankin Inlet dataset
 - <u>Skip zone distance, virtual height and plasma frequency</u> for F2 layer maximum were estimated. They show physically meaningful diurnal, seasonal and solar cycle variations.
- Currently Dave Themens' student Joshua Ruck performs a feasibility study of <u>using</u> <u>SuperDARN observations for validatng ionospheric models</u>. Its ultimate goal is assimilation of SuperDARN data into the high-latitude ionospheric model E-CHAIM.

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A solar-cycle-long dataset from very high latitudes has been selected.
 - An **accurate calibration of elevation angle** measurements has been performed.
 - <u>Elevation angle vs group range</u> dependences for each radar have been binned by UT hour, month, beam direction, and frequency band
 - These dependences were visually inspected to <u>identify the HF propagation modes</u> for Rankin Inlet dataset
 - <u>Skip zone distance, virtual height and plasma frequency</u> for F2 layer maximum were estimated. They show physically meaningful diurnal, seasonal and solar cycle variations.
- Currently Dave Themens' student Joshua Ruck performs a feasibility study of <u>using</u> <u>SuperDARN observations for validating ionospheric models</u>. Its ultimate goal is assimilation of SuperDARN data into the high-latitude ionospheric model E-CHAIM.

Ponomarenko, P., & McWilliams, K. A. (2023). Climatology of HF propagation characteristics at very high latitudes from SuperDARN observations. Radio Science, 58, e2023RS007657. <u>https://doi.org/10.1029/2023RS007657</u>

- An empirical model of HF propagation at very high latitudes has been proposed based on multi-year SuperDARN observations.
- Following tasks have been performed:
 - A solar-cycle-long dataset from very high latitudes has been selected.
 - An **accurate calibration of elevation angle** measurements has been performed.
 - <u>Elevation angle vs group range</u> dependences for each radar have been binned by UT hour, month, beam direction, and frequency band
 - These dependences were visually inspected to <u>identify the HF propagation modes</u> for Rankin Inlet dataset
 - <u>Skip zone distance, virtual height and plasma frequency</u> for F2 layer maximum were estimated. They show physically meaningful diurnal, seasonal and solar cycle variations.
- Currently Dave Themens' student Joshua Ruck performs a feasibility study of <u>using</u> <u>SuperDARN observations for validatng ionospheric models</u>. Its ultimate goal is assimilation of SuperDARN data into the high-latitude ionospheric model E-CHAIM.

Ponomarenko, P., & McWilliams, K. A. (2023). Climatology of HF propagation characteristics at very high latitudes from SuperDARN observations. Radio Science, 58, e2023RS007657. <u>https://doi.org/10.1029/2023RS007657</u>

We acknowledge the support of the Canadian Space Agency (CSA) under grant 21SUSTMRPI