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Motivations

« CASSIOPE/e-POP high-resolution electron spectra measurements: -6V applied affecting photoelectron deflection

%w%%%h neqatlve (- 3 5V) faceplate voltage applied to enable reliable estimation of the ion density.
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P E""”“_ “A collection of characteristic voltage-current sweeps from the PLP is shown in Figure 1. Notice

that the ion current is extremely flat over a large range of voltage. This is consistent with our

conceptual model of ion collection, which is simply that with an ion ram energy of about 5 eV,
the PLP should see an undisturbed cross section of the ion flux when the potential is

1 sufficiently negative as to eliminate the electron current. Furthermore, we argue that if there
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were a more complicated interaction between the PLP and the environment, that interaction
. ght be affected by the PLP potential. Since no such interaction had ever been observed,

- 4 and since the PLP current-voltage curves are indeed flat at negative voltage, we have no

reason to believe that the PLP is not seeing the representative flux caused by the relative

——+—+— motion of the spacecraft and ionospheric plasma”.
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In Swarm, we do need a large negative floating faceplate bias (-3.5 V) to enable reliable estimation of the ion density. Therefore, we do
have an evidence of a more complicated interaction between the Swarm and the environment, because interaction is strongly affected by the
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3 Model: General

General Non-Stationary Continuity (Boltzmann-Vlasov) Equation for Electron Transport in Strongly Coupled Plasmas :

=

of 25
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Where electron is accelerated by:

» Strong instrument electric field: F. (r t) e-E(F,t)

» Electron deflection by the geomagnetic field (weekly coupled pIasma)FL (F )= e-[\7>< E§(F)]
» Electron slowing down by the ambient electrons: F ( r,v t) H de—(I‘VD(ne (f,t),W)
vV

Electron deflection by elastic collisions with neutral species: |,

Set of Maxwell Equations to close the solution: (E(f,t), é(f,t))



Numerical Simulations:

Spherical Probe
2-D Phase Space (Electron Radial Motion)
of (;;:V;t) _ —din |:\‘/’ f (f"\‘/’,t):|_divv mieé(f',t) f (f"\_/’,’[) Continuity equation

div.E(F,t)=4ze(n,(F,t)—n,);n, (7,t)

I f (F,v,t)dv Gauss equation

<

Finite Element Scheme for the Instrument Shielding Dynamics in Spherical Radial and Velocity Coordinates:

Mac Cormack’s predictor-corrector integration method has been
implemented:

« Does not require explicit calculations of second derivatives,

« Accurate to second order.

Initial Conditions:
Electron velocities distribution: Maxwellian (T=900 K),10° [cm3]
Potential: Fixed at -6V

Initial Potential Radial Profile:

Phase space density: Time-independent boundary conditions are

set on right and bottom boundaries:

« Left speed and left radial boundaries: @Zefhhfe\lurrents

« Right speed and right radial boundaries: Vacuum, means no 2 3 4 5 6 7 8 9 10 11 12 13 14 15
input current from outside for potentials Distance [Debye Length]

Potential [V]
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Vzgp(f) = 4rxen, (eXIO(Z) _1) X
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Plasmas

Poisson—Boltzmann equation in vector form:

:—ego(F) <0
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Poisson—Boltzmann equation in vector form: Poisson—Boltzmann equation in spherical coordinates
A Cl 900 K Debye-Huckel Potential:
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Unit
Parameter Value s
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Plasma/Probe Charge Ratio

Charge Density [proton \cm?]

Radial Probe Shielding Dynamics in the Strongly Coupled Plasmas
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Conclusions:

A steady-state solution for the stiff Poisson—Boltzmann differential equation
has been obtained.
Completed

—ep=7eV

“Electron density rapid change (ine**®*=*%" =¢** =1.6x10* times) on a distance of a few centimeters.

A solution for the non-stationary Boltzmann-Vlasov equation has been utilized
to validate the steady-state solution.
Completed




